Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Flow Rate Optimization of a Linear Concentrating Photovoltaic System

Identifieur interne : 000C76 ( Main/Repository ); précédent : 000C75; suivant : 000C77

Flow Rate Optimization of a Linear Concentrating Photovoltaic System

Auteurs : RBID : Pascal:13-0191438

Descripteurs français

English descriptors

Abstract

The world is facing an imminent energy supply crisis. In order to sustain and increase our energy supply in an environmentally conscious manner, it is necessary to advance renewable technologies. An area of recent interest is in concentrating solar energy systems that use very high efficiency solar cells. Much of the recent research in this field is oriented toward three dimensional high concentration systems, but this research focused on a two dimensional linear concentrating photovoltaic (LCPV) system combined with an active cooling and waste heat recovery system. The LCPV system serves two major purposes: it produces electricity and the waste heat that is collected can be used for heating purposes. There are three parts to the LCPV simulation. The first part simulates the cell cooling and waste heat recovery system using a model consisting of heat transfer and fluid flow equations. The second part simulates the GaInP/GaAs/Ge multijunction solar cell output so as to calculate the temperature-dependent electricity generation. The third part of the simulation includes a waste heat recovery model which links the LCPV system to a hot water storage system. Coupling the multijunction cell model, waste heat recovery model and hot water storage system model gives an overall integrated system that is useful for system design, optimization, and acts as a stepping stone for future multijunction cell photovoltaic/thermal (PV/T) systems simulation. All of the LCPV system components were coded in Engineering Eguation Solver V8.425 (EES) and were used to evaluate a 6.2 kWp LCPV system under actual weather and solar conditions for the Phoenix, AZ, region. This evaluation was focused on obtaining an optimum flowrate, so as to produce the most electrical and heat energy while reducing the amount of parasitic load from the fluid cooling system pump. Under the given conditions, it was found that an optimal cooling fluid flowrate of 4 gal/min (2.52 x 10-4m3/s) would produce and average of 45.9 kWh of electricity and 15.9 kWh of heat energy under Phoenix conditions from July 10-19, 2005. It was also found that the LCPV system produced an average of $4.59 worth of electrical energy and displaced $0.79 worth of heat energy, while also displacing a global warming potential equivalent of 0.035 tons of CO2 per day. This simulation uses system input parameters that are specific to the current design, but the simulation is capable of modeling the LCPV system under numerous other conditions.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0191438

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Flow Rate Optimization of a Linear Concentrating Photovoltaic System</title>
<author>
<name sortKey="Kerzmann, Tony" uniqKey="Kerzmann T">Tony Kerzmann</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School Engineering, Mathematics and Science, 129 John Jay Center, Robert Morris University</s1>
<s2>Pittsburgh, PA 15108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<wicri:noRegion>Pittsburgh, PA 15108</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Schaefer, Laura" uniqKey="Schaefer L">Laura Schaefer</name>
<affiliation wicri:level="4">
<inist:fA14 i1="02">
<s1>Swanson School of Engineering, 153 Benedum Hall, University of Pittsburgh</s1>
<s2>Pittsburgh, PA 15261</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>États-Unis</country>
<placeName>
<settlement type="city">Pittsburgh</settlement>
<region type="state">Pennsylvanie</region>
</placeName>
<orgName type="university">Université de Pittsburgh</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0191438</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0191438 INIST</idno>
<idno type="RBID">Pascal:13-0191438</idno>
<idno type="wicri:Area/Main/Corpus">000D36</idno>
<idno type="wicri:Area/Main/Repository">000C76</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0199-6231</idno>
<title level="j" type="abbreviated">J. sol. energy eng.</title>
<title level="j" type="main">Journal of solar energy engineering</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon dioxide</term>
<term>Cooling</term>
<term>Energy crisis</term>
<term>Energy supply</term>
<term>Field orientation</term>
<term>Gallium phosphide</term>
<term>Germanium</term>
<term>Heat recovery</term>
<term>Heating</term>
<term>High efficiency</term>
<term>Indium phosphide</term>
<term>Linear system</term>
<term>Optimization</term>
<term>Photovoltaic system</term>
<term>Renewable energy</term>
<term>Solar cell</term>
<term>Solar energy</term>
<term>Solar hybrid technology</term>
<term>Solar system</term>
<term>System simulation</term>
<term>Ternary compound</term>
<term>Thermal equipment</term>
<term>Thermal fluid</term>
<term>Three dimensional model</term>
<term>Two dimensional model</term>
<term>Waste heat</term>
<term>Waste retrieval</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Optimisation</term>
<term>Système linéaire</term>
<term>Système photovoltaïque</term>
<term>Alimentation énergie</term>
<term>Crise énergie</term>
<term>Energie renouvelable</term>
<term>Energie solaire</term>
<term>Système solaire</term>
<term>Rendement élevé</term>
<term>Cellule solaire</term>
<term>Orientation champ</term>
<term>Modèle 3 dimensions</term>
<term>Modèle 2 dimensions</term>
<term>Refroidissement</term>
<term>Chaleur perdue</term>
<term>Reprise déchet dépôt</term>
<term>Récupération chaleur</term>
<term>Equipement thermique</term>
<term>Chauffage</term>
<term>Simulation système</term>
<term>Fluide caloporteur</term>
<term>Composé ternaire</term>
<term>Phosphure de gallium</term>
<term>Phosphure d'indium</term>
<term>Germanium</term>
<term>Dioxyde de carbone</term>
<term>GaInP</term>
<term>CO2</term>
<term>Technologie solaire hybride</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Chauffage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The world is facing an imminent energy supply crisis. In order to sustain and increase our energy supply in an environmentally conscious manner, it is necessary to advance renewable technologies. An area of recent interest is in concentrating solar energy systems that use very high efficiency solar cells. Much of the recent research in this field is oriented toward three dimensional high concentration systems, but this research focused on a two dimensional linear concentrating photovoltaic (LCPV) system combined with an active cooling and waste heat recovery system. The LCPV system serves two major purposes: it produces electricity and the waste heat that is collected can be used for heating purposes. There are three parts to the LCPV simulation. The first part simulates the cell cooling and waste heat recovery system using a model consisting of heat transfer and fluid flow equations. The second part simulates the GaInP/GaAs/Ge multijunction solar cell output so as to calculate the temperature-dependent electricity generation. The third part of the simulation includes a waste heat recovery model which links the LCPV system to a hot water storage system. Coupling the multijunction cell model, waste heat recovery model and hot water storage system model gives an overall integrated system that is useful for system design, optimization, and acts as a stepping stone for future multijunction cell photovoltaic/thermal (PV/T) systems simulation. All of the LCPV system components were coded in Engineering Eguation Solver V8.425 (EES) and were used to evaluate a 6.2 kWp LCPV system under actual weather and solar conditions for the Phoenix, AZ, region. This evaluation was focused on obtaining an optimum flowrate, so as to produce the most electrical and heat energy while reducing the amount of parasitic load from the fluid cooling system pump. Under the given conditions, it was found that an optimal cooling fluid flowrate of 4 gal/min (2.52 x 10
<sup>-4</sup>
m
<sup>3</sup>
/s) would produce and average of 45.9 kWh of electricity and 15.9 kWh of heat energy under Phoenix conditions from July 10-19, 2005. It was also found that the LCPV system produced an average of $4.59 worth of electrical energy and displaced $0.79 worth of heat energy, while also displacing a global warming potential equivalent of 0.035 tons of CO
<sub>2</sub>
per day. This simulation uses system input parameters that are specific to the current design, but the simulation is capable of modeling the LCPV system under numerous other conditions.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0199-6231</s0>
</fA01>
<fA02 i1="01">
<s0>JSEEDO</s0>
</fA02>
<fA03 i2="1">
<s0>J. sol. energy eng.</s0>
</fA03>
<fA05>
<s2>135</s2>
</fA05>
<fA06>
<s2>2</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Flow Rate Optimization of a Linear Concentrating Photovoltaic System</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KERZMANN (Tony)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHAEFER (Laura)</s1>
</fA11>
<fA14 i1="01">
<s1>School Engineering, Mathematics and Science, 129 John Jay Center, Robert Morris University</s1>
<s2>Pittsburgh, PA 15108</s2>
<s3>USA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Swanson School of Engineering, 153 Benedum Hall, University of Pittsburgh</s1>
<s2>Pittsburgh, PA 15261</s2>
<s3>USA</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>021009.1-021009.7</s2>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>6120N</s2>
<s5>354000504163880090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>22 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0191438</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of solar energy engineering</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The world is facing an imminent energy supply crisis. In order to sustain and increase our energy supply in an environmentally conscious manner, it is necessary to advance renewable technologies. An area of recent interest is in concentrating solar energy systems that use very high efficiency solar cells. Much of the recent research in this field is oriented toward three dimensional high concentration systems, but this research focused on a two dimensional linear concentrating photovoltaic (LCPV) system combined with an active cooling and waste heat recovery system. The LCPV system serves two major purposes: it produces electricity and the waste heat that is collected can be used for heating purposes. There are three parts to the LCPV simulation. The first part simulates the cell cooling and waste heat recovery system using a model consisting of heat transfer and fluid flow equations. The second part simulates the GaInP/GaAs/Ge multijunction solar cell output so as to calculate the temperature-dependent electricity generation. The third part of the simulation includes a waste heat recovery model which links the LCPV system to a hot water storage system. Coupling the multijunction cell model, waste heat recovery model and hot water storage system model gives an overall integrated system that is useful for system design, optimization, and acts as a stepping stone for future multijunction cell photovoltaic/thermal (PV/T) systems simulation. All of the LCPV system components were coded in Engineering Eguation Solver V8.425 (EES) and were used to evaluate a 6.2 kWp LCPV system under actual weather and solar conditions for the Phoenix, AZ, region. This evaluation was focused on obtaining an optimum flowrate, so as to produce the most electrical and heat energy while reducing the amount of parasitic load from the fluid cooling system pump. Under the given conditions, it was found that an optimal cooling fluid flowrate of 4 gal/min (2.52 x 10
<sup>-4</sup>
m
<sup>3</sup>
/s) would produce and average of 45.9 kWh of electricity and 15.9 kWh of heat energy under Phoenix conditions from July 10-19, 2005. It was also found that the LCPV system produced an average of $4.59 worth of electrical energy and displaced $0.79 worth of heat energy, while also displacing a global warming potential equivalent of 0.035 tons of CO
<sub>2</sub>
per day. This simulation uses system input parameters that are specific to the current design, but the simulation is capable of modeling the LCPV system under numerous other conditions.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D2</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>001D05I02E</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Optimisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Optimization</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Optimización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Système linéaire</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Linear system</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Sistema lineal</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Système photovoltaïque</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Photovoltaic system</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sistema fotovoltaico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Alimentation énergie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Energy supply</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Alimentación energía</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Crise énergie</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Energy crisis</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Crisis energía</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Energie renouvelable</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Renewable energy</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Energía renovable</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Energie solaire</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Solar energy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Energía solar</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Système solaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Solar system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sistema solar</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Orientation champ</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Field orientation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Orientacíon campo</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Three dimensional model</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Modèle 2 dimensions</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Two dimensional model</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Modelo 2 dimensiones</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Refroidissement</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Cooling</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Enfriamiento</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Chaleur perdue</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Waste heat</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Calor perdido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Reprise déchet dépôt</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Waste retrieval</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Récupération chaleur</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Heat recovery</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Recuperación calor</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Equipement thermique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Thermal equipment</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Equipo térmico</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Chauffage</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Heating</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Calefacción</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Simulation système</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>System simulation</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Simulación sistema</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Fluide caloporteur</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Thermal fluid</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Fluido termoportador</s0>
<s5>21</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Composé ternaire</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Ternary compound</s0>
<s5>22</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Compuesto ternario</s0>
<s5>22</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>Phosphure de gallium</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="ENG">
<s0>Gallium phosphide</s0>
<s5>23</s5>
</fC03>
<fC03 i1="23" i2="X" l="SPA">
<s0>Galio fosfuro</s0>
<s5>23</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Phosphure d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="ENG">
<s0>Indium phosphide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="24" i2="X" l="SPA">
<s0>Indio fosfuro</s0>
<s5>24</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="ENG">
<s0>Germanium</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="25" i2="X" l="SPA">
<s0>Germanio</s0>
<s2>NC</s2>
<s5>25</s5>
</fC03>
<fC03 i1="26" i2="X" l="FRE">
<s0>Dioxyde de carbone</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="ENG">
<s0>Carbon dioxide</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="26" i2="X" l="SPA">
<s0>Carbono dióxido</s0>
<s2>NK</s2>
<s2>FX</s2>
<s5>26</s5>
</fC03>
<fC03 i1="27" i2="X" l="FRE">
<s0>GaInP</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="28" i2="X" l="FRE">
<s0>CO2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="29" i2="X" l="FRE">
<s0>Technologie solaire hybride</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="29" i2="X" l="ENG">
<s0>Solar hybrid technology</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>175</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000C76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0191438
   |texte=   Flow Rate Optimization of a Linear Concentrating Photovoltaic System
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024